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Abstract - The analysis of compliant mechanisms has
traditionally based on known initial shapes and external forces.
For applications, it is often required to find an initial shape for the
specified deformed shape of the mechanism. We present here the
global coordinate model (GCM) with a numerical solver that is
capable of forward and inverse analysis. The model uses the arc
length as the independent variable so that the shape of straight and
curved links can be easily expressed. The resulting governing
equations are a generalization of Timoshenko's beam theory that
accounts for the effects of bending and shear deformations on
large-deflected links. The effect of shear deformation on link
deflection will also be investigated. Systematic procedures are
developed to analyze generic compliant mechanisms. Both forward
and inverse illustrations are presented. Their applications for
robotic handling of bio-material are also shown. It is expected that
the proposed model can give more insight on the analysis and
design of compliant mechanisms.

Index Terms - Compliant mechanisms, forward and inverse
analyses, shooting method, Timoshenko's beam theory

I. INTRODUCTION
Compliant mechanisms consist of links that are sensibly

deformable. The analyses of compliant links require a model
that can account for the geometric nonlinearity caused by large
deflection. Existing models for analyzing compliant
mechanisms can be divided into lumped and distributed models.
Lumped-parameter models decompose the compliant link into a
rigid link and a torsional spring, such as the pseudo-rigid-body
model [1]. Distributed-parameter models discretize the link into
small segments and use the finite element (FE) method for
analysis. Among them, the co-rotational procedure [2] has been
used widely by FM software such as ANSYS. However, small
time/mesh sizes are required in order to obtain very accurate
results. The absolute nodal coordinate formulation [3] is
frequently used for dynamic analysis. It uses global coordinates
and slopes to describe the shape of the link. The resulting mass
matrix is constant. However, the stiffness matrix and elastic
forces are highly nonlinear.
The above methods provide an analytical tool for solving

problems of compliant mechanisms; the deflected shape is
analyzed given an initial shape and external loads. However,
many engineering applications require both forward and inverse
analyses. Unlike linear problems, where inverse solutions can
be obtained by matrix inversion, large-deflection problems are
nonlinear and their inverse problems are usually difficult to deal
with. Stack et al. [4] studied the inverse elastica problem of a
beam where the load and link shape are solved given the tip

location. Saggere and Kota [5] studied the inverse problems of
a compliant four-bar mechanism. However, these studies are
limited to specific mechanisms. There is a need for a systematic
formulation for solving the inverse problems of generic
compliant mechanisms.
The generalized shooting method (GSM) has been developed

in [6] to analyze compliant mechanisms that are governed by
ordinary differential equations (ODE's). It is a generalization of
shooting method [7] that deals with more than one set of
independent ODE's. The shooting method treats a boundary
problem as an initial value problem provided appropriate initial
guesses. Its advantages over other existing methods were
highlighted [8]. However, for mechanisms consist of large
number of links, appropriate initial guesses may be difficult to
make as wrong initial guesses will lead to unbounded solutions
before completing the integration. This problem results from
relatively lengthy integration interval, which leads to the idea of
multiple shootings [7] that shorten the interval of integration.
We develop the generalized multiple shooting method in this
paper as an improved technique to deal with multiple links.

In this paper, we present the formulation of the global
coordinate for modeling the kinematics and static forces of
compliant mechanisms; serial and parallel configurations are
considered. For design and analysis, both the forward and
inverse models are needed. The forward model solves for the
deformed configuration and the internal joint forces given its
initial configuration and external forces. It is useful for
analyzing mechanisms with known initial shapes. The inverse
model, on the other hand, seeks for the initial configuration for
a specified (or desired) deformed configuration. As will be
shown through an example, the forward and inverse models are
useful bases for analyzing compliant mechanisms with initially
curved links.
The remainder of this paper provides the following:

1. We present the global coordinate model to characterize the
nonlinear deflection of compliant mechanisms. This model
accounts for the effects of flexural and shear deformation on
the deflection. Unlike traditional models that formulate using
local frames (one for each link), this model is derived using
the global coordinate which requires no transformation
matrices between links.

2. We develop a systematic procedure for formulating the
forward and inverse models along with an improved
numerical method, which is referred here as the generalized
multiple shooting method (GMSM), to solve the forward and
inverse problems based on GCM.
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Three examples are given to demonstrate the application of the
GCM-GMSM to design compliant mechanisms. Specifically,
the 2nd illustrates how a compliant grasper can be used to handle
bio-materials, live product or natural objects. Handling of these
often requires compliant devices since variability in natural
products is usually several orders-of-magnitude higher than that
for manufactured goods. The variability deforms compliant
mechanisms to adapt to natural objects so as not to cause
damage to them.

II. GLOBAL COORDINATE MODEL (GCM)
Consider a typical mechanism consisting of t compliant links

shown in Fig. 1, where Fk=(Xkx, Fyk) is an external concentrated
force acting at the kthjoint; and si denotes the path length
describing the shape of the ith link with arrow indicating the
positive direction. As will be shown, the use of si makes the
formulation relatively easy to account for large-deflected and
initially curved links.

Fk

Fig. 1 A compliant mechanism

Without losing the generality, we consider here two joint
configurations, which can be either clamped or revolute.
A floating joint connects w links as shown in Fig. 2(a). Index j

is used to number the links. An external concentrated force
(FXk, FYk) may apply at the joint.

A fixed *oint connects a link to ground (rigid structure) as
shown in Fig. 2(b). If more than one link are connected, they
are treated as individual fixed joints.

jh link Applied load (FI,k FIk)

-0

,k joint

sj+1
(a) Floating joint

Fig.2 Two type ofjoints

Floating joint at the
other end "

s

(b) Fixed joint

11.1 Governing Equations
Figure 3 shows the ith compliant link of the mechanism (Fig.

1). The link (with length L), which can be connected to a
floating or fixed joint at both ends, deflects under external
forces Fx and Fy. The original (dotted) and deflected (solid)
shapes are described by the angles of rotation qi(s1) and
Vi(s1)+yi(s1) respectively, where qri is caused by flexural
deformation and yi by shear deformation. The initial and
deformed coordinates of the link are described by (x-i, y- ) and
(xi, yi) respectively. We first formulate the potential energy of
the ith link as

Vi = 2j [EIi (dr _di)2 +1iGAiy2]ds - Fx [xi (Li) - X1i(Li)]2 ds dsS (1)

Fy [yi (Li) - Y (Li)] + Fx [xi (0) - Xi (0)] + Fy [yi (0) - Y (0)]
where E and G are the moduli of elasticity and shear
respectively; Ii is the moment of area; A, is the cross-section
area; and the shear correction factor Ki is introduced to correct
the assumption made in (1) that the shear angle yi is constant for
the entire cross-section. The value of Ki depends on the shape of
the cross-section. The 1st and 2nd terms in the integral are the
strain energy due to bending and shear respectively. The axial
deformation is assumed negligible.

rIii I Un-deflected position

Y S YIi+~~~~~~~~~iYi (Xi Yi)
Li \ Fv

(XyF
Fig. 3 The ih link in a compliant mechanism

x

Y Mh (x,y)

h+dh
(X,Y)|" )

dy ~~~~~~~~~(x+dx,y+dy) )M+dM
ds v+d

(x+dx,y+dy) ds

dx
(a) Trigonometric relation (b)Infinitesimal segment

Fig. 4 Schematic of an infinitesimal segment

In Fig. 4(a), the infinitesimal path length ds is related to the
differential segment dx and dy by cos(qf+y) and sin(qf+y)
respectively. Using these relations, we apply the principle of
minimum potential energy to (1). The equations governing the
static deformation of the link can then be obtained after
procedures of variational calculus as follows:

(EIi 4)(/L i- 7j) + vi cos(Vi + ri) - hi sin(yw1 + ri) = (2a)
hi=Fx; vi=Fy (2b,c)

[vi cos(tvi + yi) - hi sin(yi + Yi)]-AiGAiri = 0 (2d)
Equation (2) is normalized to Li by using non-dimensional path
length ui = s/Li, Uie [O 1] where a prime over the variable
denotes 1st derivative w.r.t. ui. The Lagrange multipliers hi and vi
are internal forces (sum of internal stresses over cross-section)
of the link in the +x and +y direction. Note that for clarity we
assume constant E, I, G, and A in (2). The extension to non-
homogenous material properties is straightforward.
Compared with many other displacement-based models that

often need a post computation in order to obtain internal forces,
Equation (2) can directly solve for those forces. They also serve
as an essential basis for a forward/inverse model. Note that the
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well-known Timoshenko' s beam equations assume small
deflection, i.e., qr0 and szx. Hence (2) can be viewed as a
generalization of Timoshenko's equations for large-deflection
analysis.

Depending on the type of problems, (2a)-(2d) must be solved
simultaneously with

xl - L cos(Vi +Y+) = °;iuivvaiu kZXi,1
I- Lisn(lwi + Yi) = 0

Inverse: xJ - Li cos 7i = 0; - Li sin 17i = 0 (2g,h)
The notation used here is similar to Frisch-Fay's model [9]

for a single beam. However, the external force and its direction
in F.-F.'s model are measured in the local frame attached to
each link. The GCM decomposes the external force into the
global x and y directions and thus requires no local frame. As
only a single coordinate (inertia) frame is sufficient to model all
the links, the GCM simplifies the formulation and eliminates
computation of coordinate transformation.
11.2 Constraint (Boundary) equations

Equation (2) for each link is subjected to constraint equations
at both ends (u=O or 1), which may be a floating and/or fixed
joints shown in Fig. 2. For convenience, we introduce u and a5
to denote the value of u at the joint so that

-I ifu =o
+1 ifu=I

For clarity, the constraint equations are divided into two
classes, force/displacement and angle/moment, as follows:
1. Force/displacement constraint equations

Force/displacement constraints depend on the mobility of
joints (floating or fixed). For a floating joint, the forces must
balance regardless of its type (clamped or revolute). With
external forces FXk and FVk, the followings must be satisfied:

w w

Y,&j -Fxk = 0; Y,gj -Fyk = ° (3a,b)
j=l j=l

The links are also connected rigidly at the floating joint and
must satisfy the following w-l constraint equations.

xj (uj -xj+l (u_+) = 0 for j =1 w-1
i i ~ w1(3c,d)Yj (Uy)-Yj+l (U- +l) = 0 for j = Il w

In addition, a floating joint may be subject to absolute
displacement load (DXk, Dyk) as follows:

xl(ul)= DXk; yl(ul)= Dyk. (3e,f)
When an arbitrary DXk or Dyk is applied to a joint, the
coffesponding forces (FXk and Fyk) are unknown since force and
displacement cannot be applied simultaneously at a joint.

For a fixed joint, the two constraint equations are
x(u ) = constant and y(u-) = constant . (3g,h)

The internal forces for the link connecting to a fixed joint at one
end must be determined from the other end, which connects to a
floating joint.
2. Moment/Angle constraint equations

Moment/angle constraints given below depend on joints
types (clamped or revolute as well as floating or fixed joints):
Floating joint - w constraint equations

At a clamped joint, the clamped angle between every two
links must remain unchanged after they are deflected and the
moment summation of every link must balance at the joint:

r7i ( V ) 17V+1 (ui+l ) = lvj (ui ) + rj (u A)-
[Y1+1 (u+1) +r1+1 (u1+1)] wherej = 1, , w-1

' EIE, a j VF (Uj ) - F (Uj )1]=0O
j=l j

(4a)

(4b)

A revolute joint cannot resist moment hence the change of
slope must be zero for all the w links.

Lw(j-i(uj)l= o for j = I - w (cfori-i iv(4c)
Fixed joint - one constraint equation

Equation (4d) is the angle constraint for a clamped joint and
(4e) is the moment equation for a revolute joint.

0u= (u) ; [w'(u) - 7(U)] = 0 (4d,e)

11.3 Forward and Inverse as a Dual Problem
The system (Figs. 1 and 2) represented by equations (2a-2h)

and constraints (3) and (4) can be formulated as a forward or an
inverse problem, which are a complementary pair as illustrated
in Fig. 5.

Forward_
Initial configuration, 77i problem 'Deformed configuration X,
External forces (Fxj, Fyj) Inverse Internal forces (hi, vd)

problem

Fig. 5 Forward and inverse problems

The forward analysis solves for the deformed shape
characterized by the link curvature yV+} and the corresponding
internal forces (hi, vi) given the initial shape i, and external
forces. On the other hand, the inverse analysis solves for the
initial shape i, and external forces given the deformed shape
and internal forces. Unlike the forward model that focuses on
analysis, the inverse model is for synthesis (or design). It is not
always known how much an external force a mechanism can
resist before it yields. However, the yield strength of common
material is generally available. By specifying internal forces
that are below the material's limit, the inverse analysis will give
us the appropriate external forces. We present in the next
section the generalized multiple shooting method for solving
the forward/inverse models.

III. GENERALIZED MULTIPLE SHOOTING METHOD (GMSM)
Consider the following system of f coupled, normalized sets

of 1st order nonlinear ordinary differential equations:
!Mlq' Ff'(ul,q1,1)

I-I ~~~~~~(5)M.qt f.e (8., q., )
where 0 < ui < 1 are independent variables; i = 1,., t;

qi [qil q2 ... qi]T iS the state vector, q' = dqi dui;
Mi is the coefficient (mass) matrix; and
4 = [4T, 4T,.._.74 ]T is a vector of r unknown parameters.

If Mi is a singular matrix, then (5) is a differential-algebraic
equation (DAE), otherwise it is an ODE. Each set of (5)
governs the deformation of one link. We decompose (5) into N
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sub problems by dividing the interval of integration [0 1] into N
subintervals with N+1 nodes.

o = uil < ui2 <*--

i = 1,...,1
where ui denotes the n(
ith link. A single sh
subinterval of each lin
are connected to form,
shows the idea of mult

qi

=-°

Ui = 0 Ui2

< Uj < .. < uiN < Ui,N+l -;
and i=1 N--+i F(p, ) =

w2 -q(U2;ttl)
P3 - q(U3 ;t2 )

=0 (7)
ormalized arc length of the j' node in the tN -q(UN;1N 1)
looting method is performed in each I(q(u ;tl),q(UN+I;P))
k so that the resulting solution segments g(!t,4)
a continuous solution over [0 1]. Figure 6 In summary, the GMSM includes four steps:
iple shooting. (i) Recast the BVP in a state-space form as (5).

(ii) Identify unknown initial values and parameters.
(iii) Formulate constraint equations from (3) and (4).
(iv) Integrate (5) and solve for unknowns in (7).

OOWI ',The GMSM can be solved iteratively by methods such as
Newton's or Quasi-Newton, where (5) is integrated in each
iteration. Using the steps given above, we solve (2) using
GMSM as will be illustrated in the following section.

ii3Ui4 UiNX,N+1 = 1IV. FORWARD AND INVERSE ANALYSES

Fig. 6 Multiple shooting method
Since shooting is performed more than once in the overall
interval, the method is called multiple shooting. It is also called
parallel shooting because shooting method is performed
independently on each subinterval.

Similar to single shooting, each subinterval of the multiple-
shooting requires an initial set of values in order to integrate the
ODE' s. We denote the initial values of each subinterval as

( qT (Uj ) iT (UUj) * T (Utj)q(uj) =[qf(u ..) q[(u .

f ))
T T T T

where p, now is an nx 1 vector. These initial values are not
known in advance and treated as unknowns. For N subintervals
we have 12n xN unknown initial values

" "T T pT T

with r unknown parameters 4 = [4T.4T ...,4T]T The
MnN + r unknowns are related by the following equations:
(i) J x n boundary constraint equations coffespond to (3c-3g)

and (4a-4e):
g(q(0),q(1)) = 0 (6a)

(ii) (N - 1)nJi continuity equations connect the solution segments
together:

pj+l = q(uj+,;pj ) j = I N+l1 (6b)
We put pj after the semicolon to express that the value
q(uj+1) is a function of the initial value pj in the jth interval.

(iii) r geometric constraint equations for r unknown parameters
coffespond to (3a, 3b).

g(P,4) = ° (6c)
Combining (6a), (6b), and (6c) leads to a set of MN + r

nonlinear algebraic equations as follows:

We consider the forward and inverse problems separately
since they have different state-space forms.
IV.1 Forward and inverse models in state-space forms

The forward problem is defined as follows: Given initial
mechanism configuration and external loads, solve for the
deformed configuration and internalforces ofall links. For this,
equations (2a)-(2f) are recast in a state-space form:

T2~~~~V
/IE [hi sin(Vfi + yi)- vi cos(Vti + 71)] + 71

Miqz= L cos(V/i + 71) (8a)

Li sin(Vti + Yi)
[vi cos(Vti + Yi )- hi sin(Vti + Yi )]- KiGAi Yi

where qi =[ ' x y y]T are the state variables. Since the
last component in (8a) is an algebraic equation that does not
include y',the matrix M is singular. Equation (8a) becomes a
set of DAE. MATLAB program odel5s and ode23t [10] can be
used to integrate DAE as an ODE.
We define the inverse problem as follows: Given a deformed

configuration and some of its internal forces, solve for the
initial configuration and external forces. The internal forces are
the design parameters to be specified (with selection of
materials). As in the forward analysis, equations (2a)-(2d) and
(2g,h) are recast for the inverse problem in (8b):

77

I,i [vi cos(Vti + Yi)- hi sin(Vti + y)] + Vt
Miqz = L cosli (8b)

Li sin 'h

[vi cos(tVi + Yi) - hi sin(VVi + yi)]- KiGAi7i
where qi[ 7 x y 7]T are the state variables. Opposite
of (8a), the unknown and known shape functions of the inverse
problem are 77 and Vtrespectively.
IV.2 Number of unknowns and constraint equations

The unknowns generally include initial values of (8) with
force loads (FXk, Fyk) and/or displacement loads (DXk, Dyk). As an
example, we consider force loads for the mechanism shown in
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Fig. 1. The number of constraint equations and unknowns are
given in Tables 1 and 2.

Table 1 Number of constraint equations for a joint
Type ofjoints Floating joint Fixed joint
Force/displacement 2w 2
Moment/angle w 1
Total 3w 3

Table 2 Unknowns for the forward and inverse problem
Type ofunknowns Forward problem Inverse problem
Initial values (p) ViL(O), Vi (O), xi (O) Yi (O) 7i (°) , xi(i),Yi(O)
Parameters (4) hi, Vi hi, Vi,Fxk , Fyk
#ofunknowns 6f 6f

The number of constraint equations is independent of
problem types, i.e., a floating joint connecting w links will have
3w constraint equations while a fixed joint will have three. For
a forward problem where external forces are given, there are 6
unknown for every link and hence a mechanism with / links
will have 6tunknowns. In order to apply GMSM, we provide
the proof that the number of unknowns is always equal to that
of the constraint equations for a forward problem.

Proof: Consider a mechanism consisting of t links. Then the
total number of connections is equal to 2t as a link has two
connections. For ni floating joints connecting i links and m fixed
joints, the sum of these joints must equal to the number of
connections, or

2t =Zini +m; and 6t =Z3ini + 3m (9, 10)
i=2 i=2

Equation (10) is the result of multiplying (9) by three on both
sides, where the ISt and 2nd terms on the right hand side
represent the number of constraint equations from floating
joints and fixed joints respectively. The sum of them equals
to 6t (number of unknowns) on left hand side. We then finish
the proof. The forward problem is always solvable.

For the inverse problem where some of the internal forces are
given, the number of unknowns must also equal to 6t/. In order
to be solvable, the number of given internal forces must be
equal to the number of unknown external forces. For the case of
one external force, we specify the internal force of the link that
undergoes most critical loads. Note that the internal force and
the applied force don't have to act on the same joint. For cases
of multiple external forces, care must be taken so that the
specified internal forces are not over-constrained.

V. ILLUSTRATIVE EXAMPLES AND APPLICATIONS
We demonstrate GCM and its forward/inverse models with

three examples. The 1st example illustrates the effect of shear
deformation on the link deflection. The 2nd and 3rd examples
illustrate the forward and inverse analyses respectively.
Example 1. Effect ofshear deformation on link deflection
As shown in (2d-f), the link deflection is caused by both

bending and shear. Although shear angles are small within each
infinitesimal element, they accumulate along the axial direction
of the link. The effect of shear deformation at the tip can be
observed by comparing the computation with/without shear
deformation, which cannot be ignored especially for highly
compliant members or precision flexure mechanisms.

We investigate the effect of shear deformation by applying a
vertical (+y) force on a compliant link originally pointing to +x.
We denote a5+a5, and a5 as the tip deflections in the +y with and
without considering shear deformations. We use K=5/6 as the
shear correction factor for rectangular cross-sections. Other
shear correction factor can be found in [11].

It can be shown from (2d) that the shear angle is inverse
proportional to shear modulus G, and from (2a, d) that the shear
angle is proportional to the square of the link height h. We
define the following two ratios so that the effect of these two
factors on the shear deformation can be studied on a non-
dimensional basis:
(a) Material property ratio (E/G): This ratio is related to

Poisson's ratio as E/G=2(1+v). Typical materials have an
EIG between two to three, such as steel (E/G=2.54), Delrin
(E/G=2.7), and rubber (E/G=3).

(b) Geometric aspect ratio (h/L).
Figure 7 shows the effects of these two ratios on the tip
deflection for a5=0.2. Figure 8 shows the effect of increasing tip
deflection a5 to the deflection a5, caused by shear.

12

10-

4T

0.1

Fig. 7 Effect of shear on tip deflection with 6=0.2

0.02 - h/L=1/4
h/L=1/6

0.015 h/L=1/8
h/L=1/10

Fig. 8 Effect of shear for link with large deflection (EG = 3)

Clearly, the deflection a5, becomes more significant as the two
ratios increase; it is especially dominated by the geometric
ratio. As expected, a, increases as a increases. Hence the tip
deflection due to shear deformation becomes significant for
links undergoing large deflections.
Example 2: Forward analysis ofa compliant grasper
An application of the GCM is to analyze a compliant grasper

(shown in Fig. 9) for handling objects. The pair of compliant
links shown in Fig. 9(a) have an initial shape
q(u)=1.33sin(2tu). They support the rigid frame that has
compliant fingers mounted (not shown in Fig. 9(b-c)). By the
contact forces from the object to the fingers, the links deform to
accommodate objects with variable sizes and shapes.
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Due to symmetry, we analyze the right hand side of the
grasper. The sinusoidal link clamped at Jl and J2 has length
L=0.085m and Young's modulus E=2.62GPa (Delrin). The link
also has thickness 0.00 1016m and width 0.04572m.

Defonued shape
Oiginal shape

°:i eet

fin2er

F

Pair of
liik

(a) Gripping with a compliant grasper (c) Def
Fig. 9 A compliant grasper

We solve for the displacement a5y of the rigid frai
F at J2. Since the mechanism consists of t = 1 I
6xl=6 constraint equations. The computed F-ay c

in Fig. 10. The results match well with those c
experiment, where both tension and compres
performed.

10 l CInbal coardinate mndelT

Z

;.o
0-

w -5

-10L

Compression

Tensi

-15 -10 -5 0 5
Displacement (mm)

Fig. 10 Validation of force-displacement relatiP

Example 3: Inverse analysis ofafour-bar mechat
Consider a compliant 4-bar mechanism. The

find a configuration that, after deflected, has the s
Fig. 11. It is required that L2 remains straight unc
force FX2. We also know the maximum stress c
before yield is a-. Since the maximum stress occ
of links, we express the stress at, say, JI, as

Mc cc{v1x, (1) - h1iy1 (1) + EIJ / L1 [y/'$(1) -
max -1

We use 0.1 as the safety factor and hence amax =
seek for the original shape and FX2 that will give l
maximum stress. The parameters of the 4-bar r
EI1= EI2 = EIh = 0.08NM2, LL= L3=0.2m, L
c=2mm, aC =48.4MPa.

Fx2

>w S ~~~~~~~~~~~~~3

Fig. 11 Deformed shape of a four-bar mechani

As the deformed shape is known, the angles ol
be approximated as a 4i order polynomial shown i

ormed shape

me given force
link, there are
.urve is shown
)btained by an
,sion tests are

Table 3 Polynomials that approximate the angle functions

Li Yw1 (ul) 4.88u4 _11.09u3 +11.36u2 5.74ui +1.56

L2 I2 (u2) 0.0233

L3 V3 (u3) -0.43u3 +0.73u3 +3.30u23 3.101u3 2.06

By using the approach stated in Section 11.2, we formulate the
3x6=18 constraint equations. The external force FX2 is now an
unknown and we specify the value of h3. The total number of
unknowns is 18, which matches the number of constraint
equations. Two original shapes are obtained in Fig. 12 for
h3=5N and h3= -5N. Their required forces are 32.48N and -
32.33N respectively.

Fr,= 32.48N
p p

'71,2 32 33N_ +_

| Defindshape lOriginalwih k=-5N

Fig. 12 Original and deformed shape of the four-bar mechanism

VI. CONCLUSIONS
We present the global coordinate model (GCM) along with

an improved numerical solver (GMSM) to analyze and design
the configuration of a compliant link under external loads. The
GCM, which takes into account both flexural and shear
deformation, can be viewed as a generalization of
Timoshenko's beam equations. The effect of shear deformation

> on the deflection of a compliant link has been characterized.
ion When applying to multiple links, the GCM requires only one

coordinate and thus simplify the formulation. The GCM, which
10 15 is capable of both forward and inverse analysis, consists of a

systematic formulation for analytical design of generic
ons compliant mechanisms. It is expected that the systematic

approach presented here has a broad application in designing
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